アプリケーション_MO.002: ユーザー定義された位相プレートの インポートとシミュレーション

本書は、ユーザー定義された位相プレートのASCIIデータまたは BMPデータのインポートと、回折効果のシミュレーションを解説 するものです

キーワード: Diffractive Optics、Diffractive Optical Elements、回折光学素子、Diffusers、 Beam Splitters、ビーム分岐素子、Beam Shapers、ビーム整形素子、Phase Plates、位相プレート Kinoforms、キノフォルム、Computer Generated Hologram (CGH)

必須ツールボックス: Starter Toolbox; Diffractive Optics Toolbox

関連チュートリアル:-

光源ビームのパラメーター

波長: 532 nm ビーム径(1/e²): 500 µm

ユーザー定義された位相プレート

サンプルファイルに位相プレートを 保存しております: "MO.002_Diffraction_At_User_ Defined_Phase_Plates_01.bmp"と "MO.002_Diffraction_At _User_ Defined_Phase_Plates_02.txt"

サンプリング距離: 5 µm 周期: 160 x 160 µm

ユーザー定義された位相プレートのインポート

ユーザー定義された位相プレートは、ASCII、bitmap(.bmp、.jpg、.pngなど)のフォーマットであれば、インポートする事が可能です

両ファイルのインポートを以下の頁で解説します

	Lig	htTrans V	/irtualLa	b™								
Γ	File	Edit	View	Source	Function	Manipulation	Propagation	Detector	System	Design	Solutions	Exe
	1	New									•	- 5
	2	Open									Ctrl+O	TÉ I
6		Save									Ctrl+S	4+ T
	-	Save Ac								Ctrl+	Shift+S	
	t	Import								Ctrl+	Shift+I	
		Export									Ctrl+E	

- メインメニューの"Import"を クリックします
- "Bitmap"を選択します (*.bmp; *.jpg; *.jpeg; *png)
- "MO.002_Diffraction_At_User_ Defined_Phase_Plates_01.bmp"
 を選択します
- "Open"ボタンを押します

つづく

All Supported Imports (*.ca; *.bmp; *.jpg; *.jpg; *.png; *.txt; *.ptf; *.xml; *.zmx) Complex Amplitude [VL 1] (*.ca) <u>Bitmaps (*.bmp; *.jpg; *.jpeg; *.png)</u> ASCII text (*.txt) Plain Text File (*.ptf) Structure file (*.xml) ZEMAX (*.zmx)

Image Import Typ	e X							
Select Type of	Image Import							
Monochromatic (LUT based)								
C RGB (False	e Color)							
C RGB (Real	Color)							
ОК	Cancel Help							

- BMPファイルとして保存された ファイルの様々な物理条件に対し 数種類の手法を用意しております
- 振幅と位相マスクのインポートには "Monochromatic (LUT based)"を 選択します
- BMPは、グレースケールで用意 する事を推奨します
- "OK"ボタンを押します

Import Bitmap	\1_Workspace\MO.002_Diffraction
Color Mapping Vectorial Component Ex	Preview
Field Quantity Phase Adapt Min / Max Values to Field Extrema	Since 2017
Start Value -3.1415927 End Value 0	5E-4
	-3.14059 -165 μm 155 μm
🔲 Use Middle Color 🔳	Preview
Wavelength 532 nm	OK Cancel Help

- 左図のダイアグラムでは、BMP の表示定義を司ります
 - "Field Quantity Phase"を選択し 位相プレートとしてインポート します
 - 位相の色表示範囲のMin.Max. 値を選択します。 これは バイナリーの位相プレートの 数値の範囲である - π ~0を しめします

つづく

- インポートにあたり、BMPの カラースケールの定義が必要と なります。カラースケールは 2または3色でリニアーに変色 するものです。ユーザー定義 の色を選択する場合は、 "Use Middle Color"を選択 して下さい。
 - "Preview"ボタンをクリックし、 インポートされるデータを 事前確認します
 - "OK"ボタンを押し、インポートを 完了します

トランスミッションの作成

- 左図はインポートされた位相分布 です
- インポートの結果、複素振幅による 光分布となっております。これは "status bar"(通常画面右に表示) また"Light View"に"Globally Polarized Harmonic Field"として 表示されます。
- インポートされた位相分布を 位相変調を持つ、位相プレートとして 活用可能にするには、"Jones Matrix Transmission"に変換する必要が あります

トランスミッションの作成

IJ Light	Trans	VirtualLab™	Advand	ed.			-							
File	Edit	View So	urce	Functi	on	Ν	lanipulat	ion	Propagat	ion	Detector	System	Design	Solu
i 🗋 🛛		Сору		I	9	, 1	$A^2 A_{\Sigma}^2$	Ex, Ey	combined		- 3	00	(- Y - Plane	*
1 🛄 🕯		Selection				Ë	□	11 0	- all	· Nµ	9 -) (11	।- ଇ୍ ର୍	Q
		Spherical Pha	ase Rad	ius I	· II									
		Wave Param	eters											
		Physical Mea	ining	1	•									
		Conversion		I			Jones N	Matrix	Transmiss	ion				
		Jones Vector					Spatial	Signal	l Region					
	_						Angula	r Spec	trum of S	ignal l	Region			
							Chang	e Preci	ision					
							Local P	lane V	Vaves Fiel	d				
					1		Create	Diagra	am				F3	
							Create	Equidi	istant Data	Array	/			

つづく

 メインメニューの "Jones Matrix Transmission"をクリックし、変換 します:
 Edit → Conversion → Jones Matrix Transmission

トランスミッションの作成

- ・ 左図はJones Matrix Transmissionに
 変換された状態です
- ダイアログ左下にそれが記されて おります

D	Lig	htTrans V	^r irtualLa	b™								
	File	Edit	View	Source	Function	Manipulation	Propagation	Detector	System	Design	Solutions	Exe
	1	New									•	- 5
	2	Open									Ctrl+O	NII I
d 6		Save									Ctrl+S	
L	-	Save Ac								Ctrl+	Shift+S	
Ŀ	t	Import								Ctrl+	-Shift+I	
E		Export									Ctrl+E	

- メインメニューの"Import"を クリックします
- ASCII text (*.txt, *.csv)を 選択します
- サンプルファイルに保存された "MO.002_Diffraction_At_User_ Defined_Phase_Plates_02.txt"を 選択します

• "Open"ボタンを押します

All Supported Import Formats (*.ca; *.bmp; *.jpg; *.jpeg; *.png; *.bd; *.csv; *.ptf; *.zmx) Complex Amplitude [VL 1] (*.ca) Bitmaps (*.bmp; *.jpg; *.jpeg; *.png) ASCII text (*.bd; *.csv) Plain Text File (*.ptf) Zemax (*.zmx)

- ASCIIデータをインポートする
 際に採用する物理情報を
 選択します(Complex Amplitude
 Type: Transmission)
 - データはVIRTUALLAB[™] に、 "double"、"float"または"integer" のサンプリング精度を持って保存 できます。ユーザーは"Complex Data"または"real part"を選択 可能です。これらの選択により RAM容量をセーブする事が可能 です。全データを保存しない事も 可能となると言う意味です。

- "Field Quantity"は、インポート するデータをsquared amplitude(振幅強度)、amplitude (強度)、phase(位相)、real part (実像)、または imaginary part (虚像)などから選択する事を 可能にします
- VIRTUALLAB™はヘッダーラインを
 読み取る事ができません。
 無効にするヘッダーライン数を
 選択したり、それを定義する記号を
 指示したりできます。
- コラムを区切る記号を選択します。 全てのデータラインはReturnにて 完了する必要があります。

左図のダイアグラム内の右下に しめされた表はASCIIファイルの 最初の部分を示します。 インポートに考慮される数値を 赤枠で示しました。 警告が発生する場合があります。

"preview"ボタンを押す事により、 インポートされるデータを目視にて 確認する事が可能です。

"Ok"ボタンを押して、インポート 作業を完了します。

左図はインポートされた位相分布を 示します

周期的位相プレート・トランスミッション

- ・ 位相プレートは周期的または
 非周期的でも定義可能です
- 周期的位相の場合、一つの
 周期のみインポートします
 - "Property Browser"を 起動します
 - インポートされたデータを クリックし、"Property Browser" の"Periodic Transmission"を "True"とします

位相プレート径の調整

 位相プレートの"Sampling Distance"は、インポート後に ディフォルト数値となって おります(通常 10 x 10 µm)

- "Property Browser"の"Sampling Distance"または"Array Size" をご所望の数値に変更します
- "Array Size"は、周期的位相 プレートの場合、一周期の サイズとなります
- "Array Size"を160 x 160 μm とします

 ・ 位相プレートによる回折現象は、Light Path Diagramまたはより単純に
 メインメニューの"Fourier optics models"にてシミュレーション可能です

• 両手法を以後の頁で解説します

• Light path diagramを活用するには、Starter Toolboxが必要です

 ・ 位相プレートによる回折現象は メインメニューから"Fourier optics models"にて可能です

メインメニューの"Gaussian Wave source"により、光源を設定します

nerate Gaussian Wave		X
		,
Basic Parameters	Spectral Parameters	
Spatial Parameters Po	larization Mode Selection Samplir	ng
Generate Cross Section		
	Hermite Gaussian Mode	-
	$\hfill \square$ 1D Gaussian Variation (X-Dimension)	
Order	0 ×	0
M ² Parameter	1 x	1
	· ·	- I I
 Waist Radius (1/e²) 	250 μm × 250 μ	
Waist Radius (1/e ²)	250 µm × 250 µ	
C (1/e^2)	0.03881* 0.0388	
C Rayleigh Length	369.08 mm 369.08 m	m
Astigmatism		
Offset between y- and x-Pla	ine 0	m
Copy from Calculator	Copy to x- and y-Values	J L
	septen ana j tadoo	
Default Parameters	Ok Cancel Help	

- 光源ビームは、1/e² 定義にて 500 x 500 µmとします
- "Gaussian Wave"ダイアログにて
 "Waist Radius"の入力を行います。
 250 x 250 µmと入力します。
- "Ok"を押し、光源ビームを示す ハーモニック・フィールドを作成 します

4: Illuminating Beam Intensity	
Light View Data View	
- -	
шщ	
398	
-	
E	
3986	
-1.3986 mm	1.3986 mm
Light View	Zoom: 2.5478

 左図は作成された、光源ビームの 強度分布です

- ・ 位相プレートに対し、伝播シミュレーションを行う簡単な手法は、光源ビームを示すフィールドと、位相プレートのトランスミッション(光学機能等価面)を 掛け合わせる方法です
- 掛け算は、光源ビームと位相プレートを順次クリックし、"*"をキーボードにて 押すだけです

The sampling Select the Int	parameters of th erpolation Type fo	e operands do r the transmiss	o not match. sion!	
Interpolation C continue I pixelate	n Type ous d			
	ОК	Cancel	Help	

- トランスミッションはデータの interpolation処理が必要となります
- VIRTUALLAB™により、ご所望の Interpolationのタイプの選択を要求 されます。 "Continuous"はスムーズな 位相と振幅を持つもの、"pixelated"は 矩形ピクセルを持つトランスミッション に採用します

 本例では"pixelated"を選択し"OK"を 押します

- 左図は振幅、右図は位相プレート直後の位相分布を示します。
 例:光源と位相プレートの掛け算後。
- 位相情報は、位相プレートの周期が反復的に配されている事が分かります。

- 次のステップは、位相プレート直後の 状態から、ターゲット面に伝播する 事です
- シミュレーションは、2f-Setup(共役長)
 をメインメニューにて可能です

- 焦点距離を100 mmと入力します
- "Ok"ボタンを押します

Distance to Lens		100 mn	n	
Focal Length		100 mn	ī	
Simulate Pixelation	on Exactly	,		
0		Cancel	Help	

ターゲット面における、シミュレート された強度分布(2f-setupによる 焦点面)

) Ligh	ntTrans Vi	rtualLa	b™		
File	Edit	/iew	Source	Function	Manip
	New				
2	Open				
	Import				

Den ()	
VL_Samp	les 🗸 4
🌗 Organize 👻 🏢 Views	🔹 📑 New Folder 📀
Favorite Links	None Anacongoatan typ orote
🖳 Recent Places	DO.008 Generation of DOE Fabrication Data 01.pd
Documents	
🧮 Desktop	
1 Computer	
Pictures	
🚯 Music	
Recently Changed	
Searches	
🔋 Public	
Folders ^	
File name:	DO 008 Generation of DOE Fabrication Data
. ie faile.	Open Cancel

- シミュレーションは、Light Path Diagramでも可能です
- このシミュレーションには
 Starter Toolboxが必須です
- サンプルファイルに保存された "MO.002_Diffraction_At_User_ Defined_Phase_Plates_03.lpd"を 開きます

light path diagramでは、
 Stored Transmissionが
 位相プレートを示します

 "Stored Transmission"を ダブルクリックします

つづく

D	12: Light	Path Editor (C:\VL_Samples\MO.	2_Diffractio	on_at_User_Defined	_Phase_	Plates.lpd #12)			• 🔀		
		Path Cetec	tors 🖻	Analyzer	S				त्राव्यः हे म्ल्ट्		
		Start Eleme	nt			Target Element	Linkage				
	Index	Туре	Channel	Medium	Index	Туре	Propagation Method	On/Off	Color		
	0	Gaussian Wave	-	Standard Air	1	Stored Transmission	Combined SPW/Fresnel Operator	On			
	1	Stored Transmission	Т	Standard Air	2	2f-Setup	Combined SPW/Fresnel Operator	On			
	2	2f-Setup	Т	Standard Air							
×						III					
Light Path Tools Re-Use Automatic Settings Simulation Type : Light Path Diagram Go!											

Stored Transmission
Type of Transmission Regularly Quantized Phase-Only Transmis
SetShow
Embedding and Pixelation
Embed Frame Width 0 × 0
Pixelation Factor
Scale Errors Impose Linear Scale Error by Scale Factor Impose Mask Scale Errors
Mask Phase Mask Scale Factor Number of Binary Masks
pi 1 4
pi/2 1
pi/4 1
pi/o
Ok Cancel Help

 "Type of Transmission Function"は 連続的な振幅と位相を持つのか、 矩形ピクセルにより定義されたものか を示します

"Set"と"Show"ボタンにて、
 シミュレーションに用いる
 トランスミッションを確認したり、
 セットしたりします

"Go!"ボタンをクリックし
 シミュレーションを
 スタートします

つづく

D 12: Light Path Editor (C:\VL_Samples\MO.2_Diffraction_at_User_Defined_Phase_Plates.lpd #12)										
	••	Path Cetect	iors 💌	i 🕂 a nalyzer	S				<u>।</u> गणन्द	
		Start Element				Target Element	Linkage			
	Index	Туре	Channel	Medium	Index	Туре	Propagation Method	On/Off	Color	
	0	Gaussian Wave	-	Standard Air	1	Stored Transmission	Combined SPW/Fresnel Operator	On		
	1	Stored Transmission	Т	Standard Air	2	2f-Setup	Combined SPW/Fresnel Operator	On		
	2	2f-Setup	Т	Standard Air						
Light Path Tools E Re-Use Automatic Simulation Type : Light Path Diagram Go!										

シミュレーション結果

位相プレートにより発生した ターゲット面における強度分布

インポートされた位相プレート

VIRTUALLAB[™]ではユーザー定義されたBMPまたはASCIIファイルの位相プレートのインポート機能をサポートしております

 Stored transmission素子にて、位相プレートをモデリング 可能です

 Light path diagramにより、位相プレートによる回折現象の シミュレーションが可能です